Alcohol-Impaired Driving

In this fact sheet for 2021 the information is presented as follows.

- Overview
- Economic Cost for All Traffic Crashes
- Drivers
- Children
- Crash Characteristics
- Time of Day and Day of Week
- State
- Important Safety Reminders

Drivers are considered to be alcohol-impaired when their blood alcohol concentrations (BACs) are .08 grams per deciliter (g / dL) or higher. Thus, any fatal crash involving a driver with a BAC of $.08 \mathrm{~g} / \mathrm{dL}$ or higher is considered to be an alcohol-impaired-driving crash, and fatalities occurring in those crashes are considered to be alcohol-impaired-driving fatalities. The term "drunk driving" is used instead of alcohol-impaired driving in some other NHTSA communications and material. The term "driver" refers to the operator of any motor vehicle, including a motorcycle.

Estimates of alcohol-impaired driving are generated using BAC values reported to the Fatality Analysis Reporting System (FARS) and BAC values imputed when they are not reported. For more information on multiple imputation, see Multiple Imputation of Missing Blood Alcohol Concentration (BAC) Values in FARS. ${ }^{1}$ In this fact sheet NHTSA uses the term "alcohol-impaired" in evaluating the FARS statistics. In all cases throughout this fact sheet, use of the term does not indicate that a crash or a fatality was caused by alcohol impairment, only that an alcohol-impaired driver was involved in the crash. This report also includes BACs of $.00 \mathrm{~g} / \mathrm{dL}$ (no alcohol), $.01+\mathrm{g} / \mathrm{dL}$, and $.15+\mathrm{g} / \mathrm{dL}$ solely for comparison purposes.

Key Findings

- In 2021 there were 13,384 fatalities in motor vehicle traffic crashes in which at least one driver was alcohol-impaired. This represented 31 percent of all traffic fatalities in the United States for the year.
- Fatalities in alcohol-impaired-driving crashes increased by 14.2 percent (11,718 to 13,384 fatalities) from 2020 to 2021.
- One alcohol-impaired-driving fatality occurred every 39 minutes in 2021, on average.
- The 21- to 24 -year-old age group and the 25 - to 34 -year-old age group had the highest percentages ($27 \% \mathrm{each}$) of alcohol-impaired drivers involved in fatal crashes compared to other age groups in 2021.
- In 2021 there were about 4 male alcohol-impaired drivers involved for every female alcohol-impaired driver involved.

[^0]- The percentages of alcohol-impaired drivers involved in fatal crashes in 2021 was highest for motorcycle riders (28%) compared to drivers of passenger cars (24%), light trucks (20%), and large trucks (3%).
- Of the 1,184 traffic fatalities in 2021 among children 14 and younger, 25 percent (294) occurred in alcohol-impaired-driving crashes.
- In 2021, among the 13,384 alcohol-impaired-driving fatalities, 67 percent $(9,027)$ were in crashes in which at least one driver had a BAC of $.15 \mathrm{~g} / \mathrm{dL}$ or higher.
- The rate of alcohol impairment among drivers involved in fatal crashes in 2021 was 2.8 times higher at night than during the day.

This fact sheet contains information on fatal motor vehicle traffic crashes based on data from the Fatality Analysis Reporting System (FARS). Refer to the end of this publication for more information on FARS.

Due to a vehicle classification change, the 2020 and later-year vehicle type classifications are not comparable to 2019 and earlier-year vehicle type classifications. This change affects any analysis with a vehicle component to it. Refer to the end of this publication for more information on Product Information Catalog and Vehicle Listing (vPIC).

A motor vehicle traffic crash is defined as an incident that involved one or more motor vehicles in-transport that originated on or had a harmful event (injury or damage) on a public trafficway, such as a road or highway. Crashes that occurred on private property not regularly used by the public for transport, including some parts of parking lots and driveways, are excluded. The terms "motor vehicle traffic crash" and "traffic crash" are used interchangeably in this document.

Overview

All 50 States, the District of Columbia, and Puerto Rico have set a threshold making it illegal to drive with a BAC of $.08 \mathrm{~g} / \mathrm{dL}$ or higher. Note: Utah set a lower threshold of $.05 \mathrm{~g} / \mathrm{dL}$ or higher that went into effect on December 30, 2018. In addition, people under 21 are legally prohibited from drinking alcohol (except in Puerto Rico where the legal drinking age is 18). Operating a commercial vehicle at a BAC of $.04 \mathrm{~g} / \mathrm{dL}$ or above is a violation of Federal regulations and may result in criminal charges.

In 2021 there were 13,384 people killed in alcohol-impaired-driving crashes, an average of 1 alcohol-impaireddriving fatality every 39 minutes. These alcohol-impaired-driving fatalities accounted for 31 percent of all motor vehicle traffic fatalities in the United States in 2021.

Fatalities in alcohol-impaired-driving crashes increased by 14.2 percent (11,718 to 13,384 fatalities) from 2020 to 2021 compared to a 10.1-percent increase in overall fatalities between 2020 and 2021. The national rate of alcohol-impaired-driving fatalities in motor vehicle traffic crashes in 2021 was 0.43 per 100 million vehicle miles traveled (VMT), up from 0.40 in 2020. Figure 1 presents the fatality numbers and rates for the past decade.

Figure 1. Fatalities and Fatality Rate per 100 Million VMT in Alcohol-Impaired-Driving Traffic Crashes, 2012-2021

Sources: FARS 2012-2020 Final File, 2021 Annual Report File (ARF); VMT - Federal Highway Administration (FHWA)
Note: NHTSA estimates BACs when alcohol test results are unknown.
Of the 13,384 people who died in alcohol-impaired-driving crashes in 2021, there were 8,089 drivers (60%) who were alcohol-impaired. The remaining fatalities consisted of 1,603 passengers riding with alcohol-impaired drivers (12%), 2,085 occupants of other vehicles (16%), and 1,607 nonoccupants (12%). The distribution of fatalities in these crashes by role is shown in Table 1.

Table 1. Fatalities in Alcohol-Impaired-Driving Traffic Crashes, by Role, 2021

Role	Number	Percent
Alcohol-Impaired Drivers	8,089	60%
Passengers Riding With Alcohol-Impaired Drivers	1,603	12%
Subtotal	$\mathbf{9 , 6 9 2}$	$\mathbf{7 2 \%}$
Occupants of Other Vehicles	2,085	16%
Nonoccupants (pedestrians/pedalcyclists/other)	1,607	12%
Total Alcohol-Impaired-Driving Fatalities	$\mathbf{1 3 , 3 8 4}$	$\mathbf{1 0 0 \%}$

Source: FARS 2021 ARF
Notes: Percentages may not add up to 100 percent due to individual rounding. NHTSA estimates BACs when alcohol test results are unknown.

Economic Cost for All Traffic Crashes

The estimated economic cost of all motor vehicle traffic crashes in the United States in 2019 (the most recent year for which cost data is available) was $\$ 340$ billion, of which $\$ 58$ billion resulted from alcohol-impaired crashes (drivers or nonoccupants with a BAC of $.08 \mathrm{~g} / \mathrm{dL}$ or higher). Included in the economic costs are:

- Lost productivity,
- Workplace costs,
- Legal and court costs,
- Medical costs,
- Emergency medical services,
- Insurance administration costs,
- Congestion impacts, and
- Property damage.

These costs represent the tangible losses that result from motor vehicle traffic crashes. However, in cases of serious injury or death, such costs fail to capture the relatively intangible value of lost quality-of-life that results from these injuries. When quality-of-life valuations are considered, the total value of societal harm from motor vehicle traffic crashes in the United States in 2019 was an estimated $\$ 1.37$ trillion, of which $\$ 296$ billion resulted from alcohol-impaired crashes. For further information on cost estimates, see The Economic and Societal Impact of Motor Vehicle Crashes, 2019 (Revised). ${ }^{2}$

Drivers

Table 2 provides information on alcohol-impaired drivers involved (killed or survived) in fatal crashes by the age of the driver as well as sex and vehicle type. In fatal crashes in 2021 the highest percentages of alcohol-impaired drivers were for 21 - to 24 -year-old and 25 - to 34 -year-old drivers (27% each), followed by 35 - to 44 -year-old drivers (23%).

The percentages of alcohol-impaired drivers involved in fatal crashes in 2021 was 22 percent among males and 17 percent among females. In 2021 there were about 4 male alcohol-impaired drivers involved for every female alcohol-impaired driver involved (9,693 versus 2,531). When looking at all drivers involved in fatal crashes, there were almost 3 male drivers for every female driver.

The percentages of alcohol-impaired drivers involved in fatal crashes in 2021 by vehicle type were 28 percent for motorcycle riders, 24 percent for drivers of passenger cars, and 20 percent for drivers of light-trucks (22% for drivers of pickups, 19% for drivers of SUVs, and 13% for drivers of vans). The percentages of alcohol-impaired drivers in fatal crashes was the lowest for drivers of large trucks (3\%).

Table 2. Alcohol-Impaired Drivers Involved in Fatal Traffic Crashes, by Age Group, Sex, and Vehicle Type, 2020 and 2021

Drivers Involved in Fatal Crashes	2020			2021		
	Total Drivers	BAC $=.08+\mathrm{g} / \mathrm{dL}$		Total Drivers	BAC=.08+ g/dL	
		Number	Percentage of Total		Number	Percentage of Total
Total*	54,165	11,116	21\%	60,904	12,762	21\%
Age Group						
15-20	4,588	800	17\%	5,088	884	17\%
21-24	4,911	1,279	26\%	5,513	1,499	27\%
25-34	12,011	3,134	26\%	13,200	3,531	27\%
35-44	8,956	2,004	22\%	10,291	2,417	23\%
45-54	7,778	1,501	19\%	8,764	1,735	20\%
55-64	7,316	1,142	16\%	8,085	1,284	16\%
65-74	4,129	489	12\%	4,768	589	12\%
75+	2,824	202	7\%	3,263	253	8\%
Sex						
Male	39,594	8,483	21\%	44,036	9,693	22\%
Female	13,111	2,103	16\%	15,130	2,531	17\%

[^1]| Drivers Involved in Fatal Crashes | 2020 | | | 2021 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total Drivers | BAC=.08+ g/dL | | Total Drivers | BAC=.08+ g/dL | |
| | | Number | Percentage of Total | | Number | Percentage of Total |
| Vehicle Type | | | | | | |
| Passenger Car | 19,063 | 4,530 | 24\% | 20,959 | 5,057 | 24\% |
| Light Truck | 22,266 | 4,178 | 19\% | 25,525 | 4,992 | 20\% |
| --Pickup | 8,746 | 1,898 | 22\% | 9,762 | 2,133 | 22\% |
| --SUV | 11,730 | 2,042 | 17\% | 13,609 | 2,589 | 19\% |
| --Van | 1,790 | 237 | 13\% | 2,154 | 270 | 13\% |
| Large Truck** | 4,755 | 121 | 3\% | 5,634 | 150 | 3\% |
| Motorcycle | 5,636 | 1,454 | 26\% | 6,080 | 1,727 | 28\% |

Source: FARS 2020 Final File, 2021 ARF
*Includes unknown age, unknown sex, and other/unknown vehicle type.
**Includes commercial and non-commercial trucks with GVWRs (gross vehicle weight ratings) over 10,000 pounds. Note: NHTSA estimates BACs when alcohol test results are unknown.

In 2021 there were 6,080 passenger vehicle drivers killed who were alcohol-impaired (passenger vehicles include passenger cars as well as light trucks such as pickups, SUVs, and vans with gross vehicle weight ratings of 10,000 pounds or less). Of these driver fatalities for whom restraint use was known, 65 percent were unrestrained. Based on known restraint use, 54 percent of passenger vehicle drivers killed who had BACs of .01 to $.07 \mathrm{~g} / \mathrm{dL}$ were unrestrained, 43 percent of passenger vehicle drivers killed who had no alcohol ($.00 \mathrm{~g} / \mathrm{dL}$) were unrestrained, and 66 percent of passenger vehicle drivers who had BACs of $.15 \mathrm{~g} / \mathrm{dL}$ or higher were unrestrained.

Figure 2 shows information on the driving record of drivers in fatal crashes in 2021 at different BAC levels. There was little difference by BAC level in the percentages of drivers with previously recorded crashes. Alcoholimpaired drivers involved in fatal crashes were almost 4 times more likely to have prior DWI convictions than were drivers with no alcohol (7% and 2%, respectively).

Figure 2. Percentages of Previous 5-Year Driving Records of Drivers Involved in Fatal Traffic Crashes, by BAC, 2021

Source: FARS 2021 ARF
Notes: Excludes all drivers with previous records that were unknown. NHTSA estimates BACs when alcohol test results are unknown.
While a BAC of $.08 \mathrm{~g} / \mathrm{dL}$ is considered to be impaired, the large majority of drivers in fatal crashes with any measurable alcohol had levels far higher. Eighty-four percent $(12,762)$ of the 15,135 drivers with alcohol in their systems who were involved in fatal crashes in 2021 had BAC levels at or above $.08 \mathrm{~g} / \mathrm{dL}$, and 55 percent $(8,385)$
had BAC levels at or above $.15 \mathrm{~g} / \mathrm{dL}$. In 2021 among the 13,384 alcohol-impaired-driving fatalities, 67 percent $(9,027)$ were in crashes in which at least one driver in the crash had a BAC of $.15 \mathrm{~g} / \mathrm{dL}$ or higher. Figure 3 presents the distribution of BACs for those drivers with any alcohol in their systems. The most frequently recorded BAC among drinking drivers in fatal crashes was at $.16 \mathrm{~g} / \mathrm{dL}$; the median BAC among drinking drivers was $.15 \mathrm{~g} / \mathrm{dL}$.

Figure 3. Distribution of BACs for Drivers With BACs of $.01 \mathrm{~g} / \mathrm{dL}$ or Higher Involved in Fatal Traffic Crashes, 2021

Source: FARS 2021 ARF
Note: NHTSA estimates BACs when alcohol test results are unknown.

Children

A total of 1,184 children 14 and younger were killed in motor vehicle traffic crashes in 2021. Of these 1,184 fatalities, 294 children (25%) died in alcohol-impaired-driving crashes. Of these 294 child deaths:

- $162(55 \%)$ were passengers of vehicles with alcohol-impaired drivers;
- $100(34 \%)$ were occupants of other vehicles;
- $28(10 \%)$ were nonoccupants (pedestrians, pedalcyclists, or other nonoccupants); and
- $4(1 \%)$ were child drivers.

Crash Characteristics

Figure 4 displays information about the setting surrounding alcohol-impaired drivers involved (killed or survived) in fatal crashes in 2021 including month, land use, weather, light condition, and functional system. ${ }^{3}$

In 2021 based on known crash characteristic values of alcohol-impaired drivers involved in fatal crashes:

- More occurred in July (9.7\%) and August (9.6\%) than the other months; February had the lowest percentage (6.0\%);
- 63 percent occurred in urban areas and 37 percent occurred in rural areas;
- 91 percent occurred in clear/cloudy conditions compared to 7 percent in rainy conditions and 2 percent in other conditions;

[^2]- 68 percent occurred in the dark compared to 28 percent in daylight, 2 percent in dusk, and 1 percent in dawn; and
- 87 percent occurred on non-interstate roads compared to 13 percent on interstate roads.

Figure 4. Percentages of Alcohol-Impaired Drivers Involved in Fatal Traffic Crashes, by Month, Land Use, Weather, Light Condition, and Functional System, 2021³

Source: FARS 2021 ARF
Notes: Unknowns were removed before calculating percentages. Percentages may not add up to 100 percent due to individual rounding. NHTSA estimates BACs when alcohol test results are unknown.

[^3]
Time of Day and Day of Week

Table 3 presents information on drivers involved (killed or survived) in fatal crashes in 2020 and 2021 by time of day and day of week, as well as single-vehicle and multiple-vehicle crash data. In 2021:

- The rate of alcohol impairment among drivers involved in fatal crashes was 2.8 times higher at night than during the day (31% versus 11%, respectively);
- 33 percent of all drivers involved in single-vehicle fatal crashes were alcohol-impaired, compared to 14 percent in multiple-vehicle fatal crashes; and
- 16 percent of all drivers involved in fatal crashes during the week were alcohol-impaired, compared to 28 percent on weekends.

Table 3. Alcohol-Impaired Drivers Involved in Fatal Traffic Crashes, by Crash Type, Time of Day, and Day of Week, 2020 and 2021

Drivers Involved in Fatal Crashes	2020			2021		
	Total Drivers	$\mathrm{BAC}=.08+\mathrm{g} / \mathrm{dL}$		Total Drivers	$\mathrm{BAC}=.08+\mathrm{g} / \mathrm{dL}$	
		Number	Percentage of Total		Number	Percentage of Total
Total*	54,165	11,116	21\%	60,904	12,762	21\%
Crash Type and Time of Day						
Single Vehicle*	20,760	6,593	32\%	22,103	7,291	33\%
Daytime	7,849	1,447	18\%	8,164	1,634	20\%
Nighttime	12,635	5,019	40\%	13,666	5,526	40\%
Multiple Vehicle*	33,405	4,524	14\%	38,801	5,471	14\%
Daytime	19,195	1,362	7\%	22,253	1,672	8\%
Nighttime	14,155	3,153	22\%	16,495	3,792	23\%
Time of Day						
Daytime	27,044	2,810	10\%	30,417	3,307	11\%
Nighttime	26,790	8,172	31\%	30,161	9,318	31\%
Day of Week and Time of Day						
Weekday*	32,829	5,286	16\%	36,803	5,899	16\%
Daytime	19,759	1,812	9\%	22,473	2,100	9\%
Nighttime	12,957	3,433	26\%	14,216	3,759	26\%
Weekend*	21,244	5,793	27\%	24,012	6,824	28\%
Daytime	7,285	998	14\%	7,944	1,207	15\%
Nighttime	13,833	4,739	34\%	15,945	5,560	35\%

[^4]
State

Figure 5 contains a color-coded map of the percentages of alcohol-impaired-driving fatalities by State in 2021. Table 4 shows traffic fatalities by State and the highest driver BAC in the crashes in 2021.

- Alcohol-impaired-driving fatalities were highest in Texas $(1,906)$, followed by California $(1,370)$ and Florida (1,019), and lowest in the District of Columbia (12).
- The percentages of alcohol-impaired-driving fatalities among total traffic fatalities in States ranged from a high of 44 percent (Montana) to a low of 20 percent (Mississippi), compared to the national average of 31 percent.
- The percentages of fatalities in crashes involving a driver with a BAC of $.15 \mathrm{~g} / \mathrm{dL}$ or higher ranged from a high of 31 percent (Montana) to a low of 13 percent (Mississippi), compared to the national average of 21 percent.

Figure 5. Percentages of Alcohol-Impaired-Driving Traffic Fatalities, by State, 2021

Source: FARS 2021 ARF
Note: NHTSA estimates BACs when alcohol test results are unknown.

Table 4. Traffic Fatalities, by State and Highest Driver BAC in the Crash, 2021

State	Total Fatalities* Number	No Alcohol (BAC=. $00 \mathrm{~g} / \mathrm{dL}$)		BAC=.01+g/dL		Alcohol-Impaired					
				BAC=.08+ g/dL	BAC=.15+ g/dL						
		Number	Percent			Number	Percent	Number	Percent	Number	Percent
Alabama	983	656	67\%	328	33\%	281	29\%	177	18\%		
Alaska	67	39	58\%	26	39\%	22	33\%	14	21\%		
Arizona	1,180	698	59\%	482	41\%	421	36\%	275	23\%		
Arkansas	693	459	66\%	234	34\%	185	27\%	116	17\%		
California	4,285	2,658	62\%	1,619	38\%	1,370	32\%	880	21\%		
Colorado	691	433	63\%	256	37\%	216	31\%	158	23\%		
Connecticut	298	162	54\%	135	45\%	112	38\%	73	25\%		
Delaware	136	96	70\%	39	29\%	34	25\%	21	15\%		
District of Columbia	41	25	62\%	15	36\%	12	30\%	9	22\%		
Florida	3,738	2,562	69\%	1,176	31\%	1,019	27\%	688	18\%		
Georgia	1,797	1,318	73\%	473	26\%	391	22\%	272	15\%		
Hawaii	94	57	60\%	38	40\%	28	29\%	14	15\%		
Idaho	271	176	65\%	91	33\%	85	31\%	65	24\%		
Illinois	1,334	785	59\%	547	41\%	461	35\%	332	25\%		
Indiana	932	649	70\%	283	30\%	234	25\%	153	16\%		
lowa	356	206	58\%	146	41\%	118	33\%	78	22\%		
Kansas	424	299	70\%	125	30\%	109	26\%	76	18\%		
Kentucky	806	583	72\%	221	27\%	190	24\%	136	17\%		
Louisiana	972	622	64\%	349	36\%	299	31\%	203	21\%		
Maine	153	94	61\%	60	39\%	45	29\%	35	23\%		
Maryland	561	335	60\%	226	40\%	195	35\%	124	22\%		
Massachusetts	417	243	58\%	172	41\%	150	36\%	95	23\%		
Michigan	1,136	751	66\%	385	34\%	325	29\%	219	19\%		
Minnesota	488	335	69\%	152	31\%	130	27\%	90	18\%		
Mississippi	772	589	76\%	182	24\%	155	20\%	102	13\%		
Missouri	1,016	655	65\%	358	35\%	290	29\%	196	19\%		
Montana	239	126	53\%	111	47\%	104	44\%	74	31\%		
Nebraska	221	142	64\%	79	36\%	65	29\%	44	20\%		
Nevada	385	243	63\%	142	37\%	116	30\%	80	21\%		
New Hampshire	118	65	55\%	53	45\%	45	38\%	31	26\%		
New Jersey	699	479	69\%	220	31\%	178	25\%	114	16\%		
New Mexico	481	301	63\%	176	37\%	154	32\%	111	23\%		
New York	1,157	705	61\%	452	39\%	388	34\%	249	21\%		
North Carolina	1,663	1,132	68\%	531	32\%	466	28\%	300	18\%		
North Dakota	101	63	62\%	38	38\%	33	33\%	26	25\%		
Ohio	1,354	744	55\%	610	45\%	531	39\%	373	28\%		
Oklahoma	762	523	69\%	236	31\%	192	25\%	139	18\%		
Oregon	599	335	56\%	263	44\%	215	36\%	142	24\%		
Pennsylvania	1,230	834	68\%	395	32\%	337	27\%	221	18\%		
Rhode Island	63	34	54\%	29	46\%	24	39\%	18	29\%		
South Carolina	1,198	745	62\%	453	38\%	401	33\%	282	24\%		
South Dakota	148	86	58\%	62	42\%	52	35\%	43	29\%		
Tennessee	1,327	907	68\%	420	32\%	355	27\%	247	19\%		
Texas	4,498	2,320	52\%	2,169	48\%	1,906	42\%	1,301	29\%		
Utah	328	238	73\%	89	27\%	79	24\%	52	16\%		
Vermont	74	47	64\%	27	36\%	23	31\%	14	19\%		
Virginia	973	637	65\%	335	34\%	281	29\%	187	19\%		
Washington	670	369	55\%	299	45\%	262	39\%	181	27\%		
West Virginia	280	197	70\%	82	29\%	65	23\%	47	17\%		
Wisconsin	620	399	64\%	221	36\%	199	32\%	125	20\%		
Wyoming	110	69	62\%	41	38\%	38	34\%	29	27\%		
U.S. Total	42,939	27,221	63\%	15,650	36\%	13,384	31\%	9,027	21\%		
Puerto Rico	337	191	57\%	146	43\%	116	34\%	73	22\%		

Source: FARS 2021 ARF
*Includes fatalities in crashes in which there was no driver (includes motorcycle riders) present.
Notes: Percentages are computed based on unrounded estimates. NHTSA estimates BACs when alcohol test results are unknown.

Important Safety Reminders

The best way to prevent alcohol-impaired driving is to never drive after drinking. When your plans involve drinking alcohol, follow these safety tips. Take a taxi or ride-hailing service to your destination to stop yourself from driving home after drinking.

- Always plan your safe ride home before you go out, choose a non-drinking friend as a designated driver.
- If you do drink, call a taxi, a ride-hailing service, or a sober friend to take you home.

Ways to support your friends and family:

- If you're hosting a party where alcohol is served, ask your guests to plan ahead and designate a sober driver before they arrive; offer alcohol-free beverages, and make sure all guests get home safely.
- If someone you know has been drinking, don't let them drive. Take their keys and arrange a sober ride home for them or have them stay for the night.

Ways to protect yourself and others against impaired drivers:

- Always wear your seat belt - it's your best defense against impaired drivers.
- If you see an impaired driver on the road, pull over and contact local law enforcement. Your actions could help save someone's life.
- NHTSA's Research and Program Development

Fatality Analysis Reporting System

FARS contains data on every fatal motor vehicle traffic crash within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a traffic crash must involve a motor vehicle traveling on a trafficway customarily open to the public, and must result in the death of a vehicle occupant or a nonoccupant within 30 days of the crash. The Annual Report File (ARF) is the FARS data file associated with the most recent available year, which is subject to change when it is finalized the following year to the final version known as the Final File. The additional time between the ARF and the Final File provides the opportunity for submission of important variable data requiring outside sources, which may lead to changes in the final counts. More information on FARS can be found at www.nhtsa.gov/crash-data-systems/fatality-analysis-reporting-system.

The updated final counts for the previous data year will be reflected with the release of the recent year's ARF. For example, along with the release of the 2021 ARF, the 2020 Final File was released to replace the 2020 ARF. The final fatality count in motor vehicle traffic crashes for 2020 was 39,007 , which was updated from 38,824 in the 2020 ARF. The number of alcohol-impaired-driving fatalities from the 2020 Final File was 11,718 , which was updated from 11,654 from the 2020 ARF.

Product Information Catalog and Vehicle Listing (vPIC) Vehicle Classification

Historically, vehicle type classifications (e.g., passenger cars, light trucks, large trucks, motorcycles, buses) from FARS used for analysis and data reporting were based on analyst-coded vehicle body type. NHTSA did not have manufacturer authoritative data to assist in vehicle body type coding. NCSA has developed a Product Information Catalog and Vehicle Listing (vPIC) dataset that is being used to decode VINs (Vehicle Identification Numbers) and extract vehicle information. Details of vehicles (make, model, body class, etc.) involved in crashes are obtained from vPIC via VIN-linkage. The VIN-derived information from vPIC uses the manufacturer's classification of body class, which allows for more accurate vehicle type analysis.
The vPIC-based analysis data are available beginning with 2020 FARS data file. Starting with the release of 2021 FARS data, all vehicle-related analysis for 2020 and later years will be based on vPIC vehicle classification. As a result, the 2020 and later-year vehicle type classifications are not comparable to 2019 and earlier-year vehicle type classifications. This change affects any analysis with a vehicle component to it. More information on vPIC can be found at https://vpic.nhtsa.dot.gov/.

The suggested APA format citation for this document is:
National Center for Statistics and Analysis. (2023, June). Alcohol-impaired driving: 2021 data (Traffic Safety Facts. Report No. DOT HS 813 450). National Highway Traffic Safety Administration.

For More Information:

Motor vehicle traffic crash data are available from the National Center for Statistics and Analysis (NCSA), NSA-230. NCSA can be contacted at NCSARequests@dot.gov or 800-934-8517. NCSA programs can be found at www.nhtsa.gov/data. To report a motor vehicle safety-related problem or to inquire about safety information, contact the Vehicle Safety Hotline at 888-327-4236 or
https://www.nhtsa.gov/report-a-safety-problem.
The following data tools and resources can be found at https://cdan.nhtsa.gov/.

- Fatal Motor Vehicle Traffic Crash Data Visualizations
- Motor Vehicle Traffic Crash Databook
- Fatality and Injury Reporting System Tool (FIRST)
- State Traffic Safety Information (STSI)
- Traffic Safety Facts Annual Report Tables
- FARS Data Tables (FARS Encyclopedia)
- Crash Viewer
- Product Information Catalog and Vehicle Listing (vPIC)
- FARS, NASS GES, CRSS, NASS Crashworthiness Data System (CDS), and Crash Investigation Sampling System (CISS) data can be downloaded for further analysis.

Other fact sheets available from NCSA:

- Bicyclists and Other Cyclists
- Children
- Large Trucks
- Motorcycles
- Occupant Protection in Passenger Vehicles
- Older Population
- Passenger Vehicles
- Pedestrians
- Rural/Urban Comparison of Motor Vehicle Traffic Fatalities
- School-Transportation-Related Crashes
- Speeding
- State Alcohol-Impaired-Driving Estimates
- State Traffic Data
- Summary of Motor Vehicle Traffic Crashes
- Young Drivers

Detailed data on motor vehicle traffic crashes are published annually in Traffic Safety Facts: A Compilation of Motor Vehicle Traffic Crash Data. The fact sheets and Traffic Safety Facts annual report can be found at

[^0]: ${ }^{1}$ Rubin, D.B., Schafer, J.L., \& Subramanian, R. (1998, October). Multiple imputation of missing blood alcohol concentration (BAC) values in FARS (Report No. DOT HS 808 816). National Highway Traffic Safety Administration.
 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/808816.

[^1]: ${ }^{2}$ Blincoe, L., Miller, T., Wang, J.-S., Swedler, D., Coughlin, T., Lawrence, B., Guo, F., Klauer, S., \& Dingus, T. (2023, February). The economic and societal impact of motor vehicle crashes, 2019 (Revised) (Report No. DOT HS 813 403). National Highway Traffic Safety Administration. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813403

[^2]: ${ }^{3}$ Definitions for different functional system can be found at www.fhwa.dot.gov/planning/processes/statewide/related/highway_functional_classifications/fcauab.pdf

[^3]: ${ }^{3}$ Definitions for different functional system can be found at
 www.fhwa.dot.gov/planning/processes/statewide/related/highway_functional_classifications/fcauab.pdf

[^4]: Source: FARS 2020 Final File, 2021 ARF
 *Includes drivers involved in fatal crashes when time of day was unknown.
 Note: NHTSA estimates BACs when alcohol test results are unknown.
 Daytime - 6 a.m. to 5:59 p.m.
 Nighttime -6 p.m. to 5:59 a.m.
 Weekday - Monday 6 a.m. to Friday $5: 59$ p.m. (4.5 days)
 Weekend - Friday 6 p.m. to Monday 5:59 a.m. (2.5 days)

